BOOKLET NO. TEST CODE: UGA

Forenoon

Questions: 30 Time: 2 hours

Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in the appropriate places on the Answersheet.

This test contains 30 questions in all. For each of the 30 questions, there are four suggested answers. Only one of the suggested answers is correct. You will have to identify the correct answer in order to get full credit for that question. Indicate your choice of the correct answer by darkening the appropriate oval , completely on the answersheet.

You will get

4 marks for each correctly answered question,

0 marks for each incorrectly answered question and

1 mark for each unattempted question.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET ONLY.
YOU ARE NOT ALLOWED TO USE CALCULATOR.

WAIT FOR THE SIGNAL TO START.

		numbers and $S = \{z$			
where \overline{z} denot (A) two elem		ugate of z . Then S h (B) t	as: three elements		
(C) four elem		, ,	six elements		
2. The number of one-to-one functions from a set with 3 elements set with 6 elements is			s elements to a		
(A) 20	(B) 120	(C) 216	(D) 720		
	3. Two sides of a triangle are of length 2 cm and 3 cm. Then, the maximum possible area (in $\rm cm^2$) of the triangle is:				
(A) 2	(B) 3	(C) 4	(D) 6		
	f factors of $2^{15} \times 3^{10}$ es (or both) is:	$\times 5^6$ which are either	perfect squares		
(A) 252	(B) 256	(C) 260	(D) 264		
5. The minimum value of the function $f(x) = x^2 + 4x + \frac{4}{x} + \frac{1}{x^2}$ where $x > 0$, is					
(A) 9.5	(B) 10	(C) 15	(D) 20		
	area of the triangle	formed by any tanger kes is	and to the ellipse (B) $\frac{a^2+b^2}{2}$ (D) $\frac{a^2+ab+b^2}{3}$		
7. The angle bet	7. The angle between the hyperbolas $xy = 1$ and $x^2 - y^2 = 1$ (at their				
point of inters	ection) is				
(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{6}$		
8. The population of a city doubles in 50 years. In how many years will it triple, under the assumption that the rate of increase is proportional to the number of inhabitants?					
(A) 75 years		(B) 10	00 years		
(C) $50 \log_2(3)$) years	(D) 50	$\log_a(\frac{3}{2})$ years		

	$c_1 f_1(x) + \cdots + c_n f_n(x) = 0$ for all real numbers x. Which of the fol-			
lowing is a linearly dependent set?				
	(A) $\{x, x^2, x^3\}$		$c, 2x, x^2 + 3x\}$	
	(C) $\{x, 2x^3, 5x^2\}$	(D) $\{x^2 - 1\}$	$1, 2x + 5, x^2 + 1\}$	
10.	A set of numbers S is said to whenever both $a \in S$ and $b \in S$ cube root of unity. Let	-		
	$S_1 = \{a + b \ i \mid a, b \text{ are integers}\}\ \text{and}\ S_2 = \{a + b \ \omega \mid a, b \text{ are integers}\}.$			
	Which one of the following states	ments is true?		
	(A) Both S_1 and S_2 are multiplied			
	(B) S_1 is multiplicatively closed but S_2 is not.			
	(C) S_2 is multiplicatively closed but S_2 is not.			
	(D) Neither S_1 nor S_2 is multiplicatively closed.			
	(D) Neither 51 nor 52 is multipli	catively closed.		
11.	When the product of four consec	cutive odd positive in	ntegers is divided	
	by 5, the set of remainder(s) is			
		(C) $\{0, 2, 4\}$	(D) $\{0, 2, 3, 4\}$	
12.	c. Consider the equation $x^2 + y^2 = 2015$ where $x \ge 0$ and $y \ge 0$. How many solutions (x, y) exist such that both x and y are non-negative integers?			
	(A) None	(B) E	Exactly one	
	(C) Exactly two	` ,	Greater than two	
13.	Let P be a point on the circle x^2	$+y^2 - 9 = 0 \text{ above } $	the x -axis, and Q	

9. We define a set $\{f_1, f_2, \ldots, f_n\}$ of polynomials to be a <u>linearly dependent</u> set if there exist real numbers c_1, c_2, \ldots, c_n , not all zero, such that

(A) $5\sqrt{2}$ units (B) $5\sqrt{3}$ units (C) $5\sqrt{6}$ units

the length of PQ is

be a point on the circle $x^2 + y^2 - 20x + 96 = 0$ below the x-axis such that the line joining P and Q is tangent to both these circles. Then

(D) $6\sqrt{5}$ units

plane. For every p from P to the point	oint P in S , let d_P at $(8,0)$ and the point	denote the sum $(0,12)$. The	n of the distances number of points
and $tan B$ are the	e roots of the equa	ation $x^2 - 8x$	_
$\cos^2 C - 8 \cos C \sin C$	$1C + 5 \sin^2 C$ equals	3	
(A) -1	(B) 0	(C) 1	(D) 2
$f:A\to B$ for whi is	ch the sum $f(a_1)$ +	$+ \cdots + f(a_{10})$ is	an even number,
(A) 128	(B) 256	(C) 512	(D) 768
•		y f(x) = (x+1)	$sgn(x^2-1)$ where
\mathbb{R} is the set of real (A) 0	numbers. Then the		ontinuities of f is: (D) 3
(A) 0 Suppose X is a su (that is, one-to-one X cannot be:	numbers. Then the (B) 1 bset of real numbers and onto) satisfyi	number of discovering (C) 2 are and $f: X \to f(x) > x$ for	(D) 3 X is a bijection all $x \in X$. Then
(A) 0 Suppose X is a su (that is, one-to-one-	numbers. Then the (B) 1 bset of real numbers and onto) satisfyi	number of discovering (C) 2 are and $f: X \to f(x) > x$ for	(D) 3 $\cdot X$ is a bijection
(A) 0 Suppose X is a su (that is, one-to-one X cannot be: (A) the set of int	numbers. Then the (B) 1 bset of real numbers and onto) satisfyi	number of discovering $f(C)$ 2 The set of $f(C)$ is an $f(C)$ in	(D) 3 X is a bijection all $X \in X$. Then positive integers
(A) 0 Suppose X is a su (that is, one-to-one X cannot be: (A) the set of int (C) the set of pos	numbers. Then the (B) 1 best of real numbers and onto) satisfyit egers sitive real numbers $\frac{4x^2}{-\sqrt{1+2x}} < 2x + \frac{4x^2}{\sqrt{1+2x}}$	number of discovery (C) 2 rs and $f: X \to x$ rg $f(x) > x$ for (B) the set of (D) the set of	(D) 3 X is a bijection all $X \in X$. Then positive integers
	plane. For every p from P to the poin P in S such that a (A) 0 Let A , B and C and $\tan B$ are the $\cos^2 C - 8 \cos C \sin (A) - 1$ Let $A = \{a_1, a_2,, f : A \to B \text{ for whith is} $ (A) 128 Define $\operatorname{sgn}(x) = \begin{cases} a = x \\ a = x $	plane. For every point P in S , let d_P from P to the point $(8,0)$ and the point P in S such that d_P is the least among P in S such that d_P is the least among P in S such that d_P is the least among P in S such that d_P is the least among P in S such that D is the least among P in D is P in D in	Let A , B and C be the angles of a triangle. Sugand $\tan B$ are the roots of the equation $x^2 - 8x - \cos^2 C - 8 \cos C \sin C + 5 \sin^2 C$ equals (A) -1 (B) 0 (C) 1 Let $A = \{a_1, a_2, \dots, a_{10}\}$ and $B = \{1, 2\}$. The numf: $A \to B$ for which the sum

20.	Let $ABCDEFGHIJ$ be a 10-digit number, where all the digits are
	distinct. Further, $A > B > C$, $A + B + C = 9$, $D > E > F > G$
	are consecutive odd numbers and $H > I > J$ are consecutive even
	numbers. Then A is

(A) 8 (B) 7 (C) 6

21. Let $A = \{(a, b, c) : a, b, c \text{ are prime numbers, } a < b < c, a+b+c = 30\}.$ The number of elements in A is

(A) 0 (B) 1 (C) 2

- 22. Let $f(x) = \begin{cases} \frac{|\sin x|}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ Then $\int_{-1}^{1} f(x) dx$ is equal to $(A) \frac{2\pi}{3} \qquad (B) \frac{3\pi}{8} \qquad (C) -\frac{\pi}{4} \qquad (D) 0$
- 23. Let $f:(0,2)\cup(4,6)\to\mathbb{R}$ be a differentiable function. Suppose also that f'(x)=1 for all $x\in(0,2)\cup(4,6)$. Which of the following is ALWAYS true?
 - (A) f is increasing
 - (B) f is one-to-one
 - (C) f(x) = x for all $x \in (0, 2) \cup (4, 6)$
 - (D) f(5.5) f(4.5) = f(1.5) f(0.5)
- 24. Consider 50 evenly placed points on a circle with centre at the origin and radius R such that the arc length between any two consecutive points is the same. The complex numbers represented by these points form
 - (A) an arithmetic progression with common difference $\left(\cos\left(\frac{2\pi}{50}\right) + i\sin\left(\frac{2\pi}{50}\right)\right)$
 - (B) an arithmetic progression with common difference $\left(R\cos(\frac{2\pi}{50}) + iR\sin(\frac{2\pi}{50})\right)$
 - (C) a geometric progression with common ratio $\left(\cos\left(\frac{2\pi}{50}\right) + i\sin\left(\frac{2\pi}{50}\right)\right)$
 - (D) a geometric progression with common ratio $\left(R\cos(\frac{2\pi}{50})+iR\sin(\frac{2\pi}{50})\right)$

25.	Given two complex numbers z, w with unit modulus (i.e., $ z = w =$
	1), which of the following statements will ALWAYS be correct?
	(A) $ z + w < \sqrt{2}$ and $ z - w < \sqrt{2}$
	(B) $ z + w \le \sqrt{2} \text{ and } z - w \ge \sqrt{2}$
	(C) $ z + w \ge \sqrt{2} \text{ or } z - w \ge \sqrt{2}$
	(D) $ z + w < \sqrt{2}$ or $ z - w < \sqrt{2}$

26.	The number of point	nts in the region	$\{(x,y): x^2+y^2$	≤ 4 satisfying
	$\tan^4 x + \cot^4 x + 1 =$	$=3\sin^2 y$ is		
	(A) 1	(B) 2	(C) 3	(D) 4

- 27. If all the roots of the equation $x^4-8x^3+ax^2+bx+16=0$ are positive, then a+b(A) must be -8(B) can be any number strictly between -16 and -8
 - (C) must be -16(D) can be any number strictly between -8 and 0
- 28. Let O denote the origin and A, B denote respectively the points (-10, 0) and (7, 0) on the x-axis. For how many points P on the y-axis will the lengths of all the line segments PA, PO and PB be positive integers?

 (A) 0 (B) 2 (C) 4 (D) infinite
- 29. Let $G(x) = \int_{-x^3}^{x^3} f(t)dt$, where x is any real number and f is a continuous function such that f(t) > 1 for all real t. Then,
 - (A) G'(0) = 0 and G has a local maximum or minimum at x = 0.
 - (B) For any real number c, the equation G(x) = c has a unique solution.
 - (C) There exists a real number c such that G(x) = c has no solution.
 - (D) There exists a real number c such that G(x) = c has more than one solution.

- 30. There are 2n + 1 real numbers having the property that the sum of any n of them is less than the sum of the remaining n + 1. Then,
 - (A) all the numbers must be positive
 - (B) all the numbers must be negative
 - (C) all the numbers must be equal
 - (D) such a system of real numbers cannot exist